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Abstract: This work extends previous BOUT++ work to systematically study the impact of 

edge current density on edge localized modes (ELMs), and to benchmark with the GATO and 

ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge 

current densities by keeping total current and pressure profile fixed. Based on these equilibria, 

the effects of the edge current density on the MHD instabilities were studied with the 3-field 

BOUT++ code. For the linear calculations, with increasing edge current density, the dominant 

modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, 

and the linear growth rate becomes smaller. The edge current provides stabilizing effects on 

ballooning modes due to the increase of local shear at the outer mid-plane with the edge 

current. For edge kink modes, however, the edge current does not always provide a 

destabilizing effect; with increasing edge current, the linear growth rate first increases, and 

then decreases. In benchmark calculations for BOUT++ against the linear results with the 

GATO and ELITE codes, the vacuum model has important effects on the edge kink mode 

calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum 

region, the resistivity was found to have a destabilizing effect on both the kink mode and on 

ballooning mode. With diamagnetic effects included, the intermediate-n and high-n 

ballooning modes can be totally stabilized for finite edge current density. 

1. Introduction

Edge localized modes (ELMs) are an important instability in tokamaks. They are an 

especially critical issue for ITER and future tokamak reactors, because the high heat flux 

could damage the divertor and first wall. Nowadays it is widely accepted that the mechanism 

driving ELMs is the peeling-ballooning (P-B) mode
1–3

. Both the edge current density and 

pressure gradient play roles in ELM stability, as the edge current gradient driven peeling 

modes couple with the pressure gradient driven ballooning modes. While GATO
4
 provided the 

first numerical peeling-ballooning mode calculation corresponding to an ELM, the ELITE
2,3

 

code was developed specifically to be the first successful numerical implementation of the 

P-B model and is now routinely used to explain the onset of ELMs. After that other linear 

codes (such as MISHKA
5,6

, and MARG2D
7,8

) and nonlinear codes (such as BOUT
9,10

, 

BOUT++
11–13

, M3D
14–16

, NIMROD
17–19

 and JOREK
20

) were developed, and have since been 

used to explain a number of aspects of ELM behavior. 

In BOUT++, the 3-field, two fluid, reduced MHD model was originally implemented
11–13

. 

In this model, nonideal effects (diamagnetic drift, 𝐸 × 𝐵  drift, resistivity, anomalous 

viscosity and thermal diffusivity) can be included. Recently, the code was extended to 
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implement more complicated models such as the 6-field model
21

 and gyro-Landau-fluid (GLF) 

model
22

. This has been successfully used to explain some experiments, and has been 

benchmarked with other codes
13, 23a-d

 . However so far, BOUT++ has been used mainly to 

study ballooning dominated ELMs. The studies were mainly carried out for  a circular 

cross-section equilibrium sequence with a monotonically decreasing current profile, and 

without peaks near the edge, designated here as cbm18. This work extends previous BOUT++ 

work to systematically study the role of edge current in the ELMs, by adding a peak in the 

current density near the edge with varying magnitude, and benchmarking with the GATO and 

ELITE codes. GATO and ELITE are community standard codes, based on a linear MHD 

model, and are often used for code benchmarks; while GATO is an ideal code, appropriate for 

low-𝑛 (𝑛 = 1 − 15) modes, ELITE includes some non-ideal effects, particularly sheared 

rotation, and is valid for intermediate-𝑛 (𝑛 = 5 − 100) modes.  

The equilibrium model for the starting case, cbm18_dens8 is described in section 2. 

Based on this equilibrium, a sequence of equilibria with different edge current densities was 

then generated. Section 3, the main section of this paper, studies the role of edge current 

densities in the ELMs. Also, the linear calculation benchmark with other codes is described. 

Section 4 provides a summary and some discussion. 

 

2. Equilibrium model 

As mentioned in the introduction, so far, the cbm18 equilibrium sequence has mainly 

been used for the BOUT++ calculations and benchmarks. However, for the cbm18 

equilibrium, the flux surface averaged parallel current is small in the edge region (See Figure 

1(b) for the parallel current profile) and the instabilities are consequently ballooning 

dominated. This study extends the previous work to systematically investigate the impact of 

edge current on the ELMs. Starting from the cbm18_dens8 equilibrium, a sequence of 

equilibria with different finite edge current densities was then generated to study the effect of 

edge equilibrium current on the ELMs. 

The cbm18_dens8 equilibrium was originally generated with the TOQ code 

[REFERENCE: MILLER ET AL]. The equilibrium was reproduced with the TEQ equilibrium 

module in the CORSICA code
23

. TEQ has convenient options for specifying the profiles, and 

these are utilized to set the edge current density profile. The major parameters of the 

cbm18_dens8 are: major radius 𝑅0 = 3.0 m, minor radius 𝑟 = 1.20 m, vacuum magnetic 

field at the major radius 𝐵𝑇0 = 2 T, plasma current 𝐼𝑝 = 1.63 MA, 𝑞0 = 1.05, 𝑞𝑒𝑑𝑔𝑒 =

2.99 and 𝛽𝑁 = 1.55.  

Figure 1 shows the plasma geometry and profiles. The equilibrium has a circular 

geometry, and is extended to include a vacuum region. The presence of a vacuum region 

permits free-boundary instabilities. For the BOUT++ calculations, the vacuum region is 

included as a low pressure plasma, and the physical model is the same as in the plasma region. 

In contrast, for the eigenvalue codes GATO
24

 and ELITE
2
, the perturbed energy contributed 

from the vacuum region is calculated with the Greens function method [REFERENCE:  

TROYON ET AL 1980 AND CHANCE ET AL], so the vacuum region of the equilibrium can 

be replaced by an extended boundary condition. In figure 1, the red solid line is the plasma 

boundary, where the pressure and current drop to almost zero. Also the green dashed lines 

show the computational boundary used for BOUT++, 𝜓𝑟𝑎𝑛𝑔𝑒 = [0.2, 1.4]. This domain 



is larger than was taken in previous calculations ([0.4, 1.2])
11–13

, because the kink mode has a 

wider mode structure. It should be clarified that for the cbm18 equilibrium sequence, the 

computational boundary (a circle with minor radius 𝑟 = 2.0 𝑚) is a perfect circle, while the 

plasma boundary is a little elongated. 

 

 

Figure 1. Cbm18_dens8 equilibrium configuration and profiles. (a) Flux surface configuration. (b) 

Profiles of pressure and flux surface averaged parallel current. 

 

Figure 1(b) shows the pressure profile and flux surface averaged parallel current profile 

〈𝐽∥〉 = 〈𝑱 ⋅ 𝑩〉/𝐵𝑇0. The pressure profile has a large pedestal height, which could lead to a 

strongly unstable ballooning mode. At the plasma edge, the pressure goes to almost zero; it is 

actually set to a small value (0.5% of central pressure) to avoid numerical issues. As pointed 

out earlier and seen in figure 1(b), the cbm18_dens8 equilibrium does not have a peak in the 

current density near the edge. However, a peak should be present in the current density for an 

H-mode plasma, due to the bootstrap current from the large edge pressure gradient. Therefore, 

the sequence of equilibria based on the cbm18_dens8 case, was generated with different edge 

current densities calculated by scaling the Sauter bootstrap current model
25,26

 by different 

factors. The sequence of edge current density profiles and corresponding safe factor (q) 

profiles are shown in figure 2. As the edge current density increases, the q profile at the edge 

changes, so the magnetic shear also changes. 

 



 

 

Figure 2. Profiles for the sequence of equilibrium with different edge current density profile. (a) 

Profiles of flux surface averaged parallel current. (b) Profiles of safety factor. The insert shows the  

edge region on a finer scale. 

 

As the edge current density profile was changed, the pressure profiles and total current 

were kept fixed, which is the case in the experiments after the current ramp-up. Furthermore, 

the plasma current is related to another important stability parameter, 𝛽𝑁 = 𝛽𝑇/(𝐼/𝑎𝐵𝑇), 

where 𝛽𝑇 = 2𝜇0〈𝑝〉/𝐵𝑇0
2 ; the kink mode (both global and edge kink modes) has a strong 

dependence on 𝛽𝑁, which sets the so-called beta limit
27

. With the total current increasing, 𝛽𝑁 

will decrease, and this tends to stabilize both the ballooning mode and kink mode. In the 

present work, the total current was also kept approximately fixed, which generally implies 

that 𝛽𝑁 is almost fixed as well. 

 

3. Impact of edge current density on ELMs 

3.1 Physcical model and equations 

A 3-field, two-fluid, reduced MHD model is used to study the effect of edge current 

density. Although the 6-field model is available
21

, it was found that the additional physics in 

the 6-field formulation (ion acoustic waves, thermal conductivities, Hall effects, toroidal 

compressibility and electron–ion friction) do not qualitatively change the linear instability 

properties and early phases of ELM dynamics, though those effects are important for 

self-consistent turbulence and transport and for calculations of the power deposition on the 

PFCs. The 3-field model is sufficient to simulate the onset of ELMs
21

 and is used in this paper. 

The model and equations were described in Ref.
13

; here we summarily describe them again, 

but only include the terms that are important for linear calculations. The equations evolve 

pressure 𝑃, vorticity 𝜛 and perturbed magnetic vector potential 𝐴∥: 

  
𝜕𝜛̃

𝜕𝑡
+ 𝒗𝐸 ⋅ ∇𝜛̃ = 𝐵0∇∥𝐽∥̃ + 2𝒃0 × 𝒌0 ⋅ ∇𝑃̃ (1) 

EQUATIONS MISSING THROUGH THIS SECTION 
𝜕𝑃

𝜕𝑡
+ 𝒗𝐸 ⋅ ∇𝑃 = 0 , (2) 



  
𝜕𝐴̃∥

𝜕𝑡
= −∇∥Φ +

𝜂

𝜇0
∇⊥

2 𝐴̃∥, (3) 

The variables in the equations are defined as: 

  𝜛̃ =
𝑛0𝑀𝑖

𝐵0
 (∇⊥

2 𝜙̃ +
1

𝑛0𝑍𝑖𝑒
∇⊥

2 𝑃̃) ,    Φ = 𝜙̃ + Φ0, 

   𝐽∥ = 𝐽∥0 −
1

𝜇0
∇⊥

2 𝐴̃∥,   𝒗𝐸 =
1

𝐵0
(𝒃0 × ∇⊥Φ) (4) 

In the equations, some variables can be written as 𝐹 = 𝐹0 + 𝐹̃, where 𝐹0 represents for the 

equilibrium part and 𝐹̃ is the perturbed component. Here ∇∥𝐹 = 𝐵𝜕∥(𝐹/𝐵) for any 𝐹, 

𝜕∥ = 𝜕∥
0 + 𝒃 ⋅ ∇, 𝒃 = 𝑩/𝐵 = ∇∥𝐴∥ × 𝒃0/𝐵 , 𝜕∥

0 = 𝒃0 ⋅ ∇ , 𝒌0 = 𝒃0 ⋅ ∇𝒃0  is the magnetic 

field-line curvature vector, 𝜂 is the resistivity. The important diamagnetic effects are retained 

in the second term (1/(𝑛0𝑍𝑖𝑒)∇⊥
2 𝑃̃ ) of the vorticity expression. 

A field-aligned coordinate system is used to solve the equations. The relationship between 

the field-aligned coordinate system (𝑥, 𝑦, 𝑧) and conventional toroidal coordinate system 

(𝜓, 𝜃, 𝜑) is: 

   𝑥 = 𝜓 − 𝜓0,   𝑦 = 𝜃,   𝑧 = 𝜑 − ∫ 𝜈(𝜓, 𝜃)𝑑𝜃
𝜃

𝜃0
.  (5) 

where 𝜈 is the local field-line pitch given by 

  𝜈(𝜓, 𝜃) =
𝑩⋅∇𝜑

𝑩⋅∇𝜃
  (6) 

and where ℎ𝜃 = 1/|∇𝜃| is the 𝜃 scale factor. With field-aligned coordinates, the 

computational mesh is aligned with the magnetic field, which greatly reduces the number of 

gird-points needed in this direction. A convergence study showed that for the linear 

calculation, a grid size of the simulation domain in radial, parallel, and binormal directions 

𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 = 1028 × 64 × 16 points is easily sufficient. 

For the linear calculations, in order to benchmark the BOUT++ results with the GATO 

and ELITE codes, we first focus on the ideal MHD case. Then, the more realistic situation 

(with the effects of diamagnetic effects, realistic density, and Spitzer resistivity) is considered.  

 

3.2 Linear ideal MHD calculation results 

For the linear calculations, different toroidal modes are uncoupled. For each equilibrium 

and each toroidal mode number (from n = 3 to 45), the calculated growth rate is shown in 

Figure 3(a) versus toroidal mode number. The cbm18_dens8 case is a ballooning dominated 

case
19

. The most unstable mode number is at the highest n and the low n kink mode is stable. 

This case has been studied by BOUT++ and other codes
13,16,19

. Figure 3(a) shows that as the 

edge current density increases, the dominant mode changes from a high-n ballooning mode to 

low-n kink mode. For the high n mode, the linear growth rate becomes smaller as the current 

increases. Thus the edge current density provides a stabilizing effect on the ballooning mode. 

These trends have been found by other linear codes such as ELITE
28

 and MISHKA-1
6
. 



 
Figure 3. (a) Linear growth rate for cases with different edge current densities. (b) Root mean square 

of the perturbed pressure profiles for n=35. The Fourier decomposition of 𝜉𝜓 = 𝝃 ⋅ ∇𝜓/|∇𝜓| for the 

most unstable mode in case D is plotted in the inset.. 

 

To clearly see the effect of current stabilization on ballooning modes, the root mean 

square (RMS) of the perturbed pressure (𝛿𝑃) at the outer mid-plane is plotted in figure 3(b) 

for the n=35 mode for different edge current densities. The RMS height of 𝛿𝑃 is normalized 

to the growth rate in each case. It can be seen that, with the edge current density increasing, 

the perturbed pressure decreases and a valley forms near  ~ 0.825 for the highest edge 

current density cases. This valley is located at the peak of the current density (figure 2); this 

stabilization effect is due to the increase in local magnetic shear at the outer mid-plane. 

Conventionally, the magnetic shear is defined as 𝑠 =
𝑟

𝑞

𝑑𝑞

𝑑𝑟
 or 𝑠 =

𝜓

𝑞

𝑑𝑞

𝑑𝜓
 or 2𝑉

𝜕𝜓𝑞

𝜕𝜓𝑉

29
 and is an 

index of the change rate of magnetic field line pitch angle from one flux surface to the next. 

However, for toroidal geometry, the pitch angle is not uniform in the poloidal direction. Thus, 

we use the local magnetic shear, defined as 

  𝑠𝑙 =
𝜓

𝜈

𝑑𝜈

𝑑𝜓
, 𝜈 =

ℎ𝜃𝐵𝜙

𝑅𝐵𝜃
,  (7) 

to characterize the local magnetic field properties. Here, the local safety factor,  , indicates 

the local magnetic field pitch angle and ℎ𝜃 is the radius of curvature. This definition is 

similar to the global shear, 𝑠 =
𝜓

𝑞

𝑑𝑞

𝑑𝜓
, but the safety factor 𝑞 is replaced by the local safety 

factor 𝜈. The conventional shear definition is essentially the averaged local shear, and here, is 

referred to as the global shear to avoid confusion. However the ballooning mode is mainly 

localized at the outer mid-plane where the local shear is the most important. Figure 4 shows 

the profiles of global shear, local shear at the outer mid-plane and at the inner-plane for the 

original equilibrium cbm18_den8 and for case D. This shows that, with increasing edge 

current, the global shear decreases, while the local shear at the outer mid-plane increases in 

absolute value; it is well known that magnetic shear can stabilize ballooning modes
30

. 

[THIS DOES NOT SEEM TO BE RIGHT:  FROM THE FIGURE IT LOOKS LIKE THE 

LOCAL OUTER MIDPLANE SHEAR DOES NOT CHANGE FROM CBM18 TO CASE D] 



  

Figure 4. Magnetic global shear (𝑠 =
𝜓

𝑞

𝑑𝑞

𝑑𝜓
) and local shear for case cbm18_dens8 and case D.  

 

Figure 3(a) also shows that, as the edge current density increases, the linear growth rate 

first increases for low-𝑛 n kink modes but then decreases. Thus, the edge current density does 

not always result in a destabilizing effect on the low-n edge kink mode.  

 

3.3 Benchmark with GATO/ELITE codes and the effect of vacuum region 

As a check, the BOUT++ results were benchmarked against the GATO and ELITE codes. 

For the cbm18_dens8 case, the BOUT++ results perfectly agree with GATO/ELITE. Good 

agreement has also been shown in Ref. 13. However, as the edge current density increases, the 

difference between BOUT++ and GATO/ELITE becomes apparent. For the low n cases with 

large edge current density (case D), the difference is especially large. 

 

 

Figure 5. Linear growth rates from BOUT++, ELITE and GATO for cases cbm18_dens8, A, and D. 

 

The discrepancy is due to different physics models in the vacuum region. For GATO and 

ELITE, the vacuum region is treated as an ideal vacuum, equivalent to a region with an 

infinite resistivity
19

 and the Greens function method is used to calculate the perturbed vacuum 

energy contribution. On the other hand, for BOUT++, the vacuum region is treated as low 

pressure plasma. In the previous ideal MHD calculations, this is equivalent to zero resistivity. 

To demonstrate the effect of vacuum region handling, the plasma boundary used in GATO 



was displaced outward by 40% to make the vacuum model the same as in BOUT++. In that 

case, the linear growth rate and the mode structure from GATO show excellent agreement 

with the BOUT++ results. Figures 6 (a) and (b) show the growth rate and mode structure from 

BOUT++ and GATO (for case D, 𝑛 = 5). They are almost identical. For comparison, figure 

6(c) also shows the GATO mode structure inside the plasma found with the ideal vacuum 

model.  

 

 

Figure 6. Mode structure comparison for case D, n=5. (a) BOUT++ results. (b) GATO results with 

computational boundary extended to 1.4. (c) GATO results with normal computational boundary. 

 

The vacuum region handling has an important effect on the low n kink mode calculation. 

The reason is that the low n kink mode has a wider mode structure than the ballooning mode. 

As shown in figure 6(a), the mode extends widely into the vacuum region, while for the 

ballooning dominated case (case cbm18_dens8), the mode structure is relatively narrow, 

being mostly restricted to the plasma region, and so the vacuum region model has a much 

smaller effect. 

In realistic situations, the vacuum region is neither the ideal vacuum, nor the ideal MHD 

plasma, but is instead, a highly resistive plasma with low density and low temperature. In the 

earlier BOUT++ calculations, a constant density and ideal MHD model only were used. The 

effect of a more realistic density and resistivity therefore needs to be considered. A realistic 

density profile, defined as 𝑛𝑒 = 𝑛𝑖 = 𝐶 ∗ 𝑃0.3, is shown in figure 7(a). 𝐶 is selected to 

obtain a desired 𝑛𝑒(0) value.  (Here 𝑛𝑒(0) = 5 × 1019 m−3). Then the temperature profile 

can be calculated from the 𝑃 profile and assuming 𝑇𝑒 = 𝑇𝑖. The resistivity is calculated with 

the Spitzer model: 

  η = 0.51 × 1.03 × 10−4 𝑍𝑖 ln Λ 𝑇𝑒
−3/2

 Ω m−1  (8) 

The resistivity profile is also shown in Figure 7(a). The linear growth rates were compared for 

the cases of constant or realistic density profiles, and ideal or resistive MHD models, and the 

results for case D are shown in figure 7(b). The realistic density profile has a destabilizing 

effect on both the ballooning mode and the kink mode. Diamagnetic effects were also 

considered. It is shown in figure 7(b) that diamagnetic effects are stabilizing for the 

ballooning mode, but have no effect on the kink mode. With diamagnetic effects, the 

intermediate n and high n modes can be totally stabilized. As a comparison, the linear growth 

rate for case cbm18_dens8 is also plotted in figure 7(b). With realistic density, Spitzer 



resistivity and diamagnetic effects, the dominant mode is an intermediate n ballooning mode, 

and the linear growth rate is much higher than in case D. Hence, in the more realistic situation, 

the edge current can shift the dominant mode from intermediate n ballooning mode to low n 

kink mode, with a reduction in the linear growth rate. 

 

 

Figure 7. (a) Density and resistivity profiles used in the BOUT++ calculation. The black curves are for 

constant density and the corresponding resistivity profile, and the red curves are for the realistic 

density profile. (b) Linear growth rates for Case D with different density and resistivity profiles. With 

diamagnetic effects included (black solid curve), the intermediate n and high n modes are all stabilized. 

For case cbm18_dens8 (black dashed curve), the realistic density profile and resistivity and 

diamagnetic effects are all included. 

 

3.4 High 𝛽 pedestal plasma cases 

One issue of the reduced MHD model used in BOUT++ is that it neglects compressional 

Alfven waves with B||~0, which may become important in high beta plasmas. To determine if 

the reduced model is still valid for the cases presented here, beta scans were performed and 

the BOUT++ results compared with GATO results for different 𝛽𝑁
𝑝𝑒𝑑

. The definition of 𝛽𝑁
𝑝𝑒𝑑

 

is similar to that of 𝛽𝑁 in section 2, but with the pressure at the pedestal top substituted for 

〈𝑝〉  in the expression for 𝛽𝑁 expression: 𝛽𝑁
𝑝𝑒𝑑

= 𝛽𝑇
𝑝𝑒𝑑

/(𝐼/𝑎𝐵𝑇) , where 𝛽𝑇
𝑝𝑒𝑑

=

2𝜇0𝑝
𝑝𝑒𝑑

/𝐵𝑇0
2 . 𝛽𝑁

𝑝𝑒𝑑
 is essentially the normalized pedestal height. Figure 8 shows that when 

the 𝛽𝑁
𝑝𝑒𝑑

 reaches 1.8, the difference between the GATO and BOUT++ results becomes 

apparent. Fortunately in real situations the 𝛽𝑁
𝑝𝑒𝑑

 cannot be so large since large Type I ELMs 

will be triggered before 𝛽𝑁
𝑝𝑒𝑑

 reaches 2.0. DIII-D experiments showed that
30

 the maximum 

𝛽𝑁,𝑒
𝑝𝑒𝑑

 (𝛽𝑁,𝑒
𝑝𝑒𝑑

 is the electron part of  𝛽𝑁
𝑝𝑒𝑑

) is less than 0.7, so the maximum 𝛽𝑁
𝑝𝑒𝑑

 is about 

1.4. For ITER, the maximum optimized 𝛽𝑁
𝑝𝑒𝑑

 is about 0.9, which was predicted by the 

EPED1.6 model
31

. We conclude then that for realistic 𝛽𝑁
𝑝𝑒𝑑

 values, the reduced MHD model 



is still valid for ELM studies. 

 

  

Figure 8. Linear growth rate comparison of GATO and BOUT++ for different 𝛽𝑁
𝑝𝑒𝑑

 (𝑛 = 3, 5). The 

difference becomes apparent if 𝛽𝑁
𝑝𝑒𝑑

> 1.8. 

 

 

4. Summary 

In summary, the impact of edge current density on the ELM behavior has been studied. 

This work extends previous BOUT++ work to systematically study the impact of edge current 

density on the ELMs, and provides an additional benchmark with the GATO and ELITE 

codes. With the 3-field model in the BOUT++ code, the impact of the edge current density on 

the MHD instabilities was investigated. For the linear calculations, with the edge current 

density increasing, the dominant modes change from intermediate-n and high-n ballooning 

modes to low-n kink modes, and the linear growth rate is reduced. The edge current density 

provides a stabilizing effects on ballooning modes; this stabilizing effect is due to the local 

shear at the outer mid-plane increasing with the edge current density. For the edge kink modes, 

the edge current density does not always provide a destabilizing effect; in that case, with the 

edge current density increasing the linear growth rate first increases, then decreases.  

BOUT++ linear results were also benchmarked against the GATO and ELITE codes. It 

was shown that the vacuum model has an important effect on the edge kink mode calculations. 

By setting a more realistic density profile and a Spitzer resistivity profile in the vacuum 

region, the resistivity is found to have a destabilizing effect on both the kink and ballooning 

modes. With diamagnetic effects included, the intermediate-n and high-n ballooning modes, 

otherwise destabilized by finite edge current density, can be totally stabilized. 

 This work shows that with the reduced MHD model, BOUT++ is still valid for kink 

mode dominated ELM cases, and is still good for high beta cases. A normalized pedestal beta 

𝛽𝑇
𝑝𝑒𝑑

 is defined to characterize the validity of the reduced MHD model used in BOUT++.  

However the verification work so far was only performed for a circular plasma. Further 

verification, validation, and benchmarking with GATO and ELITE for shaped plasmas and 

diverted plasmas will be given in future publications.  
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